Overview

Objectives

- Discuss the problems corrosion causes in fire sprinkler systems
- Discuss life expectancy of fire sprinkler systems
- Identify the causes of corrosion
- Current state of corrosion technology
- Mitigation: when / where to apply
- Evaluate the economic impact decisions regarding corrosion has on fire sprinkler systems
Why do we care about corrosion in fire sprinkler systems?
Codes require them
COST!!
- American Fire Sprinkler Association, AFSA
 - New construction $1-$2 / ft2
 - Retrofits $2-$3 / ft2
- 100K ft2 (9300m3) = $100K-$200K new construction
- 50K ft2 (4650m3) = $100K-$150K retrofits

The biggest concern is that corrosion can cause a sprinkler system to fail.

50% Blockage
(California, 5 year old system)

Failed Sprinkler Head
(Illinois, 12 year old system)
Corrosion produces many issues in the fire sprinkler market

- Pinhole leaks
- Limits effectiveness of fire sprinkler design
- Loss of property
- Loss of production
- Temporary shutdowns, often unplanned
- Total system replacements
- Personal injury

What is the life expectancy of a fire sprinkler system?
VdS 20-year long survey of corrosion in sprinkler systems:

Class I - Little damage is found the pipe array should just be flushed.

Class II - Medium damage is found, so that some but not all pipes show increased damage, those pipes must be replaced.

Class III - Considerable corrosion and deposits the complete pipe array or parts of it must be replaced.

Classes of Corrosion

- **Fontana**
 - **Class I**
- **Indianapolis**
 - **Class II**
- **Wisconsin**
 - **Class III**

Wet Systems
Classes of Corrosion

Dry Systems

- Cincinnati
 - Class I
- Minneapolis
 - Class II
- Illinois
 - Class III

VdS Survey

Results Summary

<table>
<thead>
<tr>
<th>System Type</th>
<th>Class I</th>
<th>Class II</th>
<th>Class III</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet Systems</td>
<td>65%</td>
<td>32%</td>
<td>3%</td>
<td>In 25 years, 35% have significant corrosion issues</td>
</tr>
<tr>
<td>Dry and Pre-Action Systems</td>
<td>27%</td>
<td>51%</td>
<td>22%</td>
<td>In only 12½ years, 73% have significant corrosion issues</td>
</tr>
</tbody>
</table>

What is the life expectancy of a fire sprinkler system?
Types of Corrosion

There are 2 main types of corrosion in FSS
1) Generalized Corrosion (Rust)
2) Microbiologically Influenced Corrosion (MIC)

FM Global study found 40% of corrosion was influenced by MIC and 60% of corrosion was generalized corrosion.
The number one enemy of a wet system is **TRAPPED AIR**, which can take up **70%** of the sprinkler system.

Trapped Air Causes:
- Increased Generalized Corrosion
- Better MIC environment
- Unnecessary False Flow Alarms

Why Is Trapped Air a Problem:
- System Design!
Wet Systems

Average Corrosion Rates At Various Water Levels

- 50% filled with Water and Compressed Air: 0.3043
- 75% filled with Water and Compressed Air: 0.6738
- 100% filled with Water: 0.2152

Research
Trapped Air:

â€¢ In many sprinkler systems, it is unrealistic to remove all trapped air cost effectively

â€¢ How can you remove more trapped air (oxygen)?

â€¢ Pre-fill the wet system with Nitrogen before filling with water – Wet Inerting!

Wet System Inerting Testing

Average Corrosion Rates of Coupons Comparing Air to 99% Nitrogen

50% Water Fill

Average life expectancy increase up to 2.8X
How do I purge Oxygen From A Wet System?

Corrosion flourishes in Dry and Pre-action systems because they are NEVER 100% DRY.

Trapped water from hydrostatic testing, combined with humid air supplied constantly by the air compressor creates a perfect storm.
Nitrogen Tests

Corrosion Comparison Tests
(0.010” Leak Diameter)

Compressed Air
98% Nitrogen
After 20 months
Nitrogen Tests

Corrosion Coupon Testing Manifold

After 12 Months

Steel Coupon
Compressed Air

Steel Coupon
98% Nitrogen

Galvanized Coupon
Compressed Air

Galvanized Coupon
98% Nitrogen
Nitrogen Tests

<table>
<thead>
<tr>
<th>Water</th>
<th>Metal</th>
<th>98% Nitrogen Inhibition Effectiveness (% Protection)</th>
<th>Life Expectancy Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trace</td>
<td>Steel</td>
<td>45.4%</td>
<td>1.8</td>
</tr>
<tr>
<td>Trace</td>
<td>Galvanized</td>
<td>91.8%</td>
<td>12.2</td>
</tr>
<tr>
<td>Half Full</td>
<td>Steel</td>
<td>78.6%</td>
<td>4.6</td>
</tr>
<tr>
<td>Half Full</td>
<td>Galvanized</td>
<td>61.6%</td>
<td>2.6</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>69.4%</td>
<td>5.3</td>
</tr>
</tbody>
</table>

Localized Corrosion

Localized Corrosion = Quick Failures

Galvanized Schedule 40 after only 3 1/2 years

Galvanized Schedule 10 after only 18 months
Installation Guidelines for Automatic Sprinklers 2-0
FM Global Property Loss Prevention Data Sheets

2.5.2.5 Protection of Sprinkler System Piping

See Data Sheet 7-14, Protection for Flammable Liquid/Flammable Gas Processing Equipment, for installation guidelines for sprinkler system piping in areas subject to potential explosion hazards. Do not hang anything, including conduit, cable trays, air piping, speakers, and signs, from sprinkler system piping.

Use internally galvanized, stainless steel, or similar corrosion-resistant pipe in all new dry-pipe, pre-action, refrigerated-area, deluge, and exposure-protection sprinkler systems. Do not use galvanized pipe in areas where the ambient temperature could exceed 130°F (54°C) unless the pipe is specifically FM Approved for use in such conditions.

Exception: Black steel pipe can be used in dry-pipe sprinkler systems equipped with closed-type sprinklers if the piping system is filled with an inert gas.

Table 23.4.4.7.1 Hazen-Williams C Values

<table>
<thead>
<tr>
<th>Pipe or Tube</th>
<th>C Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unlined cast or ductile iron</td>
<td>100</td>
</tr>
<tr>
<td>Black steel (dry systems</td>
<td>100</td>
</tr>
<tr>
<td>including preaction)</td>
<td></td>
</tr>
<tr>
<td>Black steel (wet systems</td>
<td>120</td>
</tr>
<tr>
<td>including deluge</td>
<td></td>
</tr>
<tr>
<td>Galvanized steel (dry systems</td>
<td>100</td>
</tr>
<tr>
<td>including preaction)</td>
<td></td>
</tr>
<tr>
<td>Galvanized steel (wet systems</td>
<td>120</td>
</tr>
<tr>
<td>including deluge</td>
<td></td>
</tr>
<tr>
<td>Plastic (listed) all</td>
<td>150</td>
</tr>
<tr>
<td>Cement-lined cast- or ductile iron</td>
<td>140</td>
</tr>
<tr>
<td>Copper tube or stainless steel</td>
<td>150</td>
</tr>
<tr>
<td>Asbestos cement</td>
<td>140</td>
</tr>
<tr>
<td>Concrete</td>
<td>140</td>
</tr>
</tbody>
</table>

No Hydraulic Advantage

23.4.2.1 Friction Loss Formula

\[
f = \frac{4.52Q^2}{C^2d^4}
\]

where:

- \(f \) = friction resistance (psi/ft of pipe)
- \(Q \) = flow (gpm)
- \(C \) = friction loss coefficient
- \(d \) = actual internal diameter of pipe (in.)

Source: NFPA 13, 2013

The authority having jurisdiction is permitted to allow other C values.

Removing Trapped Oxygen

Automatic Air Vents AUTOMATICALLY vent the trapped air in the wet fire sprinkler system. This eliminates the corrosion oxygen trapped in the line.

- **PAV**
- **PAAR-B**

The *Only* UL-Listed and FM approved air vents for fire sprinkler branch lines.

Keeping the System Free of Oxygen

- Remotely test without flowing new water into systems
- Reduces corrosion – no new oxygen when testing
- Conserves water – contributes to LEED’s Section 3.1 & 3.2
- Preserves chemical treatments
- No environmental concerns over sprinkler water discharge
- Initiate test using key switch or Fire Alarm Panel
• **Pipe-Shield™** is a patented biostatic environmentally friendly corrosion inhibitor.

• Specifically developed to protect wet and dry fire sprinkler systems from MIC and oxygen corrosion.

• Is a cationic (+) polymer that is attracted to the anionic (-) oxygen layer on the surface of the iron. This attraction creates an effective wall which blocks the penetration of oxygen free radicals and formation of MIC bacterium.

• Designed for metallic systems ONLY.

• Reduced Pressure Backflow Preventer often required.

• Does not require replenishment like a toxic biocide.

Nitrogen

Replace the Oxygen with Nitrogen.

Nitrogen is an INERT gas.

It does not react with metals. Thus, no oxidation or rust occurs!

The earth’s atmosphere is 78% nitrogen and 21% oxygen.

Strip the oxygen from air and leave pure nitrogen!
Nitrogen generators provide reliable, on-site nitrogen production.

Purging Process – Getting Air Out

Initial system fill with air
Nitrogen level monitoring
Stops purging when nitrogen levels reach target.
BMS connectivity and notification
Advance Purging – Designed for drying and freezer applications, reducing moisture and ice build-up.
Manual options also available
Nitrogen Generators

Economic Impact

- Use black steel instead of galvanized piping
 - Saves roughly 30% on sprinkler piping
- Save existing systems from additional corrosion
- Use a lower supervisory pressure
 - Smaller compressor
 - Smaller membrane
 - Less expensive system
- Feed more than one system
 - “Plant Nitrogen”
 - Economies of scale

Parking garage installation

Nitrogen Generators

Nitrogen: Cure all??

- Eliminates most oxygen in wet and dry systems
 - Slows corrosion
 - Disrupts MIC environments
 - Further decreases dew point

Parking garage installation
Every corrosion mitigation plan should include a monitoring program.
Wet Inerting

Wet Systems

- Design systems to vent trapped air
- Minimize fresh water ingress
- Test the water
- Wet inert the system prior to filling
 - Or, use a corrosion inhibitor (steel systems)
- Implement a corrosion monitoring program
Recommendations

Dry Systems

- Use nitrogen over compressed air
- Use black steel over galvanized
- Use a corrosion inhibitor
- Use lower supervisory pressure
- Implement a corrosion monitoring program

Questions?

Jeff Merwin
Director of Business Development
Fire Sprinkler Monitoring / OEM Controls
jeffm@pottersignal.com
800-325-3936